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Abstract— In the pursuit of safer and more efficient au-
tonomous driving systems, scoring of motion plans plays a
crucial role. This work introduces a novel framework for
learning interpretable scoring rules represented in temporal
logic. Our method features a learnable logic structure that
represents nuanced relationships in diverse driving scenarios.
By employing a data-driven, fully differentiable framework, we
optimize the rules and parameters directly from driving demon-
strations. Our approach also overcomes the limitation of single-
class training data, distinguishing desirable behaviors without
explicit negative examples. Evaluations in closed-loop planning
simulations demonstrate that our learned scoring rules out-
perform existing techniques, including expert-crafted rules and
neural network scoring models, while maintaining interpretabil-
ity. This work contributes a versatile, data-driven approach to
enhance the scoring mechanism in autonomous driving systems,
which is applicable to various motion planning methods. Our
video and code are available on xiong.zikang.me/FLoRA/.

I. Introduction

Autonomous vehicles face the complex task of navigating
through dynamic environments safely and efficiently. At the
heart of this challenge lies the process of motion planning -
determining the best path for the vehicle to take. However,
generating a single optimal path is often not enough. Instead,
modern autonomous driving systems typically produce mul-
tiple potential plans [1]–[4], which then need to be evaluated
and refined. This is where scoring and selection of motion
plans come into play. These techniques act as a crucial filter,
assessing the quality of each proposed path and choosing
the most suitable one for execution. By applying additional
evaluation steps after the initial plan generation, we can
significantly enhance the safety, efficiency, and overall perfor-
mance of autonomous vehicles. The importance of effective
scoring becomes even more apparent in complex autonomous
driving systems, particularly in end-to-end approaches. These
systems often utilize large, intricate neural networks that
incorporate elements of randomness, such as dropout or sam-
pling from probability distributions. While powerful, these
characteristics can make it challenging to predict the sys-
tem’s behavior consistently. By implementing interpretable
scoring rules, we introduce a layer of predictability and
reliability to these complex systems. These rules act as a
safeguard, evaluating the generated motion plans against
clear, understandable criteria. This additional step helps
to mitigate the uncertainties inherent in complex planning
systems, providing a more robust and trustworthy framework
for autonomous vehicle decision-making. In essence, scoring
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Fig. 1. Learning and applying scoring rules represented in temporal logic.
The Learning Scoring Rules block, which is the key contribution of our
work, shows a Scoring Logic Network (SLN) that learns from demonstration
data on good behaviors. We can extract and simplify symbolic rules from
this network. Here we show three of the rules learned by the SLN: (1)
⊤ → G InDrivable (always stay in the drivable area, e.g., lane, intersection);
(2) G(SafeTTC→ Comfortable) (if the vehicle has safe Time-To-Collision
(TTC) with surrounding vehicles, it should always be subject to all comfort
constraints); (3) ¬SpeedLimit → F Overtaking (the vehicle should not
exceed the speed limit unless it is overtaking another vehicle). The Motion
Plan Proposing block shows 4 motion plans colored in different colors,
generated by PDM’s proposer [1]. The Online Monitors and Scoring block
monitors and scores the proposed plans in 20 Hz, with the learned rules.
The green plan receives the highest score by satisfying all rules.

techniques serve as a critical bridge, connecting the raw
outputs of planning algorithms to the final, executable plans
that guide autonomous vehicles through our highways and
cities.

We focus on learning scoring rules represented in temporal
logic for evaluating autonomous driving plans, which assess
and rank plans generated by motion plan proposers. These
scoring rules capture the latent relationships between various
driving rules and constraints; for example, if a vehicle has
a safe time-to-collision with surrounding vehicles, it should
always be subject to all comfort constraints. By applying
these rules to the output of a motion planner, we can
score and select desirable plans, ensuring that the planned
paths adhere to safety standards and traffic regulations while
maintaining optimal performance. Figure 1 illustrates the
learning process and how we might apply scoring rules.

https://xiong.zikang.me/FLoRA/


In practice, building these scoring rules presents several
significant challenges. First, the latent relationships and
dependencies among various rules are often non-trivial.
For instance, while a vehicle is generally not permitted to
exceed the speed limit, exceptions may exist in specific
scenarios such as overtaking another vehicle. These nuanced
dependencies make it challenging to create a comprehensive
set of rules that account for all possible situations. Second,
determining the optimal parameters for rules is a complex
task. For example, establishing appropriate thresholds for
safe time-to-collision, comfortable acceleration, or accept-
able steering angle requires careful consideration of multi-
ple factors. These parameters must balance safety concerns
with the need for efficient and smooth vehicle operation.
Third, available demonstration data typically only showcases
correct behavior and lacks sufficient examples of incorrect
actions. Having only single-class training data poses a signif-
icant challenge for machine learning algorithms, as they must
learn to distinguish between acceptable and unacceptable
behaviors without a sufficient number of explicit negative
samples.

Our approach addresses these challenges through three
interconnected key ideas. First, to capture latent relationships
among driving rules, we introduce a learnable logic structure
that seamlessly integrates temporal and propositional logic.
Our structure can represent nuanced decisions such as when
it is appropriate to exceed the speed limit for a safe overtak-
ing maneuver. Second, we tackle the challenge of parameter
optimization by letting the data speak for itself. Rather than
relying on manual tuning, our system learns optimal rule
parameters directly from driving demonstrations, leveraging
the fully differentiable logic structure used to represent rules.
Third, we overcome the limitation of learning from only
positive examples through a novel regularization-constrained
optimization framework that simultaneously rewards correct
demonstration behaviors and restricts the space of acceptable
ones.

We evaluate the efficacy of our learned scoring rules in
NuPlan [5] closed-loop simulations. These results demon-
strate that our learned rules can effectively score and select
desirable plans, outperforming both expert-crafted rules and
neural network-based approaches when considering both
interactive and non-interactive scenarios. We further show
that the learned rules perform consistently well across dif-
ferent proposers, including PDM [1], PDM-Hybrid [1], ML-
Prop [5], and a rule-based acceleration-time sampler [4]. In
summary, our contributions are as follows:
• We propose a novel learnable logic structure that dis-

covers and captures latent relationships among candidate
driving rules, represented in temporal logic.

• We introduce a data-driven approach to optimize rule
parameters, enabling the system to learn effective scor-
ing rules from driving demonstrations.

• We present an optimization framework that allows the
system to learn from single-class data, enabling it to dis-
tinguish between acceptable and unacceptable behaviors
in the scoring process.

• We demonstrate the effectiveness of our approach in
scoring and selecting desirable plans via NuPlan closed-
loop simulation, outperforming expert-crafted rules and
neural network-based approaches across various scenar-
ios and proposers.

II. Related Work

Scoring models are widely used in autonomous driving
systems, which evaluate the safety, efficiency, and comfort
of an autonomous driving system. Existing approaches can
be broadly categorized into rule-based and learning-based
models. Rule-based scoring models [1], [2], [5]–[13] leverage
expert knowledge and domain-specific rules, offering inter-
pretability but lacking data-driven adaptability. In contrast,
learning-based scoring models, typically approximated with
deep neural network, [3], [4], [14]–[19] are data-driven
and can capture complex patterns, but often sacrifice in-
terpretability, which can be intimidating for safety-critical
applications. Several works [16]–[19] have employed inverse-
reinforcement learning for scoring model development, learn-
ing from single-class demonstrations. However, these ap-
proaches either require expensive closed-loop simulation [19]
or additional samplers to generate non-ideal demonstrations
[16]–[18], while also producing uninterpretable scoring mod-
els. These challenges underscore the need for scoring models
that balance adaptability and interpretability in autonomous
driving systems.

In the broader context of temporal logic rule learning
[20], some researchers have explored learning interpretable
rules from demonstrations. For instance, [21] proposed a
backpropagation-based approach to learn temporal logic
specifications from demonstrations. However, this approach
is designed only to learn the parameters of the logic formula,
not the structure. [22] developed an approach capable of
learning both the structure and parameters of logic formulas,
but it relies on heuristic search with manually designed
selection criteria, which may not generalize well across
domains. Lastly, none of these works have been applied to
mining autonomous driving rules or validated on large-scale
real-world datasets such as NuPlan [5].

Current literature has not fully explored the potential of
learning interpretable rules directly from driving data. Our
work addresses this gap by proposing a novel approach that
learns interpretable rules and their parameters from single-
class demonstrations through a regularization-constrained
optimization framework, which avoids additional samplers
or expensive closed-loop simulations.

III. Preliminaries

We formulate the key technical components and our ob-
jective in this section.

a) Predicate 𝑃𝜃 : At a certain time point, given all
environment information E (e.g., map, traffic light state,
current and history states of all the agents in the scene) and
motion plan 𝜏, the differentiable predicate 𝑃𝜃 is defined as:
𝑃𝜃 : (E × 𝜏) → [−1, 1], which evaluates driving conditions



and the ego1 car’s motion plan. It maps E and 𝜏 to a
truth confidence value in [−1, 1], where 𝜃 are the predicate
parameters. When designing the predicate, we ensure that
the gradient ∇𝜃𝑃𝜃 exists and can be computed. The sign
of 𝑃𝜃 indicates truth. 𝑃𝜃 < 0 implies False; 𝑃𝜃 > 0
implies True. The absolute value |𝑃𝜃 | indicates the degree
of confidence. Our work is evaluated on NuPlan [5], a
state-of-the-art autonomous driving planning benchmark. E
and 𝜏 follow the definition in [5]. As a concrete example,
predicate 𝑆𝑎 𝑓 𝑒𝑇𝑇𝐶 (E, 𝜏) in Fig. 1 checks if the ego car
has a safe time-to-collision to surrounding cars. This can
be formulated as: SafeTTC(E, 𝜏) = tanh(𝑇𝑇𝐶𝑚𝑖𝑛 (E, 𝜏) −
𝜃), where 𝑇𝑇𝐶𝑚𝑖𝑛 (E, 𝜏) is the minimum time-to-collision
between the ego car and any surrounding vehicle, and 𝜃 is
the differentiable safety threshold. The tanh function ensures
differentiability and bounds the output between -1 and 1.
A positive value indicates a safe TTC (i.e., 𝑇𝑇𝐶𝑚𝑖𝑛 > 𝜃),
while a negative value indicates an unsafe TTC. Similar to
most existing work [20], we explicitly design the predicates
and focus this paper on learning logical connections and
parameters assuming a given set of predicates. With the
predicate defined, we can now move on to discussing how
these predicates are combined into logical formulas.

b) Formula L: Given a differentiable predicate set P =

{𝑃1
𝜃1
, 𝑃2

𝜃2
, . . . , 𝑃𝑛

𝜃𝑛
}, we introduce a LTL 𝑓 logic space [23]

that includes compositions of predicates from P and logic
operators. The logic formula L can be generated from the
following grammar:

L := 𝑃𝜃 | G L | F L | ¬L | L ∧ L′ | L ∨ L′ (1)

where 𝑃𝜃 ∈ P is a differentiable predicate, G and F
are temporal operators representing “globally” and “finally”
respectively, ¬ is logical negation, ∧ is logical and, and ∨ is
logical or. Like most existing work [20], the strong “Until”
(L U L′) is not included because it can be represented
using existing logic operators (F L′ ∧ G(L ∨ L′)). Having
established the syntax for our logic formulas, we now need
a way to evaluate them quantitatively.

c) Quantitative Evaluation of Formula: Given a finite
input sequence 𝑆 = {(E𝑡 , 𝜏𝑡 )}𝑇𝑡=0 sampled at different time
points, up to a bounded time 𝑇 , we can evaluate the logic
formula L quantitatively using a set of min and max opera-
tors[24], [25]. This evaluation maps the sequence 𝑆 to a value
in [−1, 1], denoted as L(𝑆; 𝜽) → [−1, 1] . Here, 𝜽 represents
all the predicates’ parameters. Specifically, we define the
quantitative evaluation of an atomic predicate 𝑃𝜃 at time 𝑡

as 𝑃𝜃 (E𝑡 , 𝜏𝑡 ) ∈ [−1, 1]. In (2), the temporal logic operators
G and F evaluate the formula L over the entire sequence
from time 𝑡 onwards. GL (globally) returns the minimum
value of L over all future time points, which ensures the
property holds throughout the sequence if GL evaluates to
a positive value. FL (finally) returns the maximum value,
indicating the property is satisfied at least once in the future.

1The ego car refers to the vehicle being controlled in a driving scenario.

The evaluation function 𝜌 is defined as:

𝜌(GL, 𝑡) = min
𝑡 ′≥𝑡

𝜌(L, 𝑡′) 𝜌(FL, 𝑡) = max
𝑡 ′≥𝑡

𝜌(L, 𝑡′)
(2)

For single time point evaluation, the logical operators and
(∧), or (∨), and not (¬) are defined using min, max, and
negation operations:

𝜌(L ∧ L′, 𝑡) =min{𝜌(L, 𝑡), 𝜌(L′, 𝑡)}
𝜌(L ∨ L′, 𝑡) =max{𝜌(L, 𝑡), 𝜌(L′, 𝑡)}
𝜌(¬L, 𝑡) = − 𝜌(L, 𝑡)

(3)

All the operations defined by 𝜌 are differentiable, which
allows us to backpropagate through. In practice, we use
softmin and softmax to approximate min and max operators
for a smooth gradient [21]. With the evaluation framework in
place, we can now define our overall objective for learning
optimal driving rules. For simplicity, we define 𝜌(·) :=
𝜌(·, 0), meaning evaluate from the initial of input sequence.

d) Objective: Our objective is twofold: (1) learn the
optimal logic formula L∗, and (2) optimize the parameters 𝜽
of the predicates, which characterize the demonstration data
accurately. Formally, we aim to solve the following problem:

L∗, 𝜽∗ = argmax
L∈ΩP ,𝜽

E𝑆∼D+ [L(𝑆; 𝜽)] (4)

where D+ represents driving demonstrations, which consist
solely of correct demonstrations that represent ideal driving
behaviors.

IV. Approach

This section presents our approach to learning inter-
pretable driving rules from demonstrations. We begin by
introducing the concept of condition-action pairs in Sec. IV-
A, which forms the foundation of our rule representation.
Sec. IV-B introduces the core of our method: the learnable
logic structure. Here, we explain its components, analyze
its capabilities, and describe how we extract and simplify
rules from it. Finally, Sec. IV-C addresses the challenge of
learning from single-class demonstrations, introducing our
novel regularization techniques to overcome the limitations
of positive-only examples.

A. Condition-Action Pair

We consider rules that consist of conditions and expected
actions. For instance, one such rule might require that the
ego car eventually stop when approaching a stop sign.
This pattern of condition-action pairing extends to countless
driving situations. Thus, we focus on effectively learning and
reducing driving rules to condition-action pairs.

Predicates are the basic unit of our rules. We cat-
egorize our predicates into two types: condition predi-
cates P̄ = { ¯𝑃1

𝜃1
, ¯𝑃2

𝜃2
, . . . , ¯𝑃𝑛

𝜃𝑛
} and action predicates ¤P =

{ ¤𝑃1
𝜃1
, ¤𝑃2

𝜃2
, . . . , ¤𝑃𝑚

𝜃𝑚
}. Condition predicates evaluate traffic

conditions (e.g., if approaching a stop sign), while action



predicates assess the motion plan (e.g. if the ego car is
stopped). Given

condition := 𝑃𝜃 | G 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 | F condition | ¬condition
action := ¤𝑃𝜃 | G action | F action | ¬action

(5)
we extract and simplify the learned logic formula L to a set
of propositional rules of the form:

𝑚⊙
𝑖=1

©«
𝑛∧
𝑗=1

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑗 → 𝑎𝑐𝑡𝑖𝑜𝑛𝑖
ª®¬ (6)

where
⊙

denotes that this condition-action pairs are con-
nected by ∧ or ∨ operators. The conjunction of condi-
tions (

∧𝑛
𝑗=1 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑗 ) allows for more precise and specific

criteria to be defined for each action, thereby describing
precisely when the action should be allowed. Building upon
this foundation, we introduce a learnable logic structure to
represent and learn these condition-action pairs.

B. Learnable Logic Structure
The learnable logic structure L̄ is a directed acyclic com-

putation graph that represents a compositional logic formula.
It consists of three types of layers: Temporal, Propositional,
and Aggregation. These layers are interconnected through
learnable gates that determine the flow and combination of
logical operations. An example of this structure is shown in
Fig. 2.

1) Layer Definition: In the lowest block of Fig. 2, the
frame batch is processed through P and then passed through
Temporal layers. Let 𝐹 = { 𝑓1, 𝑓2, ..., 𝑓𝑇 } be a sequence
of 𝑇 frames, where each frame represents a time point.
Define P = {𝑃1

𝜃1
, 𝑃2

𝜃2
, ..., 𝑃𝑁

𝜃𝑁
} as a set of 𝑁 predicates.

For each predicate 𝑃𝑖
𝜃𝑖
∈ P and each frame 𝑓𝑡 ∈ 𝐹, we

compute 𝑋 𝑡
𝑖

= 𝑃𝑖
𝜃𝑖
( 𝑓𝑡 ). Let 𝑋𝑇

𝑖
= [𝑥1

𝑖
, 𝑥2

𝑖
, ..., 𝑥𝑇

𝑖
] be the

sequence of predicate values for predicate 𝑃𝑖
𝜃𝑖

across all
time steps. The output of the predicates is then defined as
X𝑇 = {𝑋𝑇

1 , 𝑋
𝑇
2 , ..., 𝑋

𝑇
𝑁
}, where each 𝑋𝑇

𝑖
∈ R𝑇 contains the

predicate values computed over the entire time sequence for
the 𝑖-th predicate. These frame sequences can be batched as
shown in Fig. 2, to simplify the symbols, we only discuss
the case with batch size one in the following parts.

The Temporal layer T operates on each element 𝑋𝑇
𝑖
∈

X𝑇 , potentially applying a temporal operator. Formally, the
output of T is 𝑂𝑇 = T (X𝑇 ) = {𝑜𝑇1 , 𝑜

𝑇
2 , . . . , 𝑜

𝑇
𝑁
}, where

𝑜𝑇
𝑖

= T (𝑥𝑇
𝑖
) ∈ {G𝑋𝑇

𝑖
,F𝑋𝑇

𝑖
, 𝑋𝑇

𝑖
}. Temporal layers can be

stacked, allowing for the composition of temporal operators.
For instance, with two stacked temporal layers, we could
have T2 (T1 (𝑋𝑇

𝑖
)) = F(G(𝑋𝑇

𝑖
)). This composition allows for

expressing more nuanced and complex temporal properties.
The Propositional logic layer F operates on its input set

𝑂𝑇 , generating
(𝑁

2
)

clusters, each containing a combination
of two inputs connected by a logical operator. The behavior
of F is formalized as F (𝑂𝑇 ) = 𝑂𝑃 = {𝑜𝑃1 , 𝑜

𝑃
2 , . . . , 𝑜

𝑃

(𝑁2 )
},

where 𝑜𝑃
𝑖

= (¬)𝑜𝑇
𝑗
◦ (¬)𝑜𝑇

𝑘
, ◦ ∈ {∧,∨}, and 𝑂𝑇 =

{𝑜𝑇1 , 𝑜
𝑇
2 , . . . , 𝑜

𝑇
𝑁
} is the output of a Temporal layer. Here,

𝑗 and 𝑘 represent the indices of the two different inputs

Fig. 2. The logic structure L̄ consists of three types of layers:
Temporal, Propositional, and Aggregation. The Temporal layer processes
the initial predicates, applying temporal operators. The Propositional layer
generates all possible pairs of predicates connected by logical operators. The
Aggregation layer aggregates the output of the Propositional layer into one
cluster by deciding the logic operator to connect neighboring clusters. The
Temporal layers can be stacked. Layer’s formal definition is in Sec. IV-B.1.
Two types of gates, the selection gate , and the negation gate , are used to
control the logic operators and the sign of the cluster inputs, respectively.
Each clear circle (⃝) in these gates represents a single value weight. In the
selection gate, the circle represents the operator with the largest weight,
meaning the operator is selected. In the negation gate, the circle represents
the negation of the input (i.e., multiply with a negative number), while the

circle represents the original input (i.e., a positive number). The gate
implementation is in Sec. IV-B.2. Supposing we only consider one layer of
Temporal layer (𝑛 = 1), and given a set of predicates P = {𝑃1

𝜃1
, 𝑃2

𝜃2
, 𝑃3

𝜃3
},

𝑃2
𝜃2
∈ P̄ and 𝑃1

𝜃1
, 𝑃3

𝜃3
∈ ¤P, this learnable logic structure represents the

logic formula (G𝑃1
𝜃1
∨ ¬𝑃2

𝜃2
) ∨ (¬G𝑃1

𝜃1
∧ F𝑃3

𝜃3
) ∨ (¬𝑃2

𝜃2
∧ F𝑃3

𝜃3
) This

formula can be further reduced to 𝑃2
𝜃2
→ (G𝑃1

𝜃1
∨ F𝑃3

𝜃3
) .

being combined. Each input can be negated or unchanged
when passing through a logic layer. We do not stack the
Propositional layer as it would lead to exponential growth in
the number of clusters, and aggregating on one Propositional
layer can represent any formula in the form of (6) as proved
in IV-B.3.

The Aggregation layer aggregates the output of the Propo-
sitional (𝑂𝑃) layer into one cluster by deciding the logic op-
erator from {∧,∨} to connect neighboring clusters. Formally,
given the input 𝑂𝑃 , the output of the Aggregation layer can
be represented as A(𝑂𝑃) = 𝑜𝑃1 ◦1 𝑜𝑃2 ◦2 . . . ◦(𝑁2 )−1 𝑜𝑃(𝑁2 )

,
where ◦ represents ∧ or ∨.

A logic structure can be formally defined as L̄ =

A(F (T ×𝑛 (P))), where 𝑛 is the number of stacked Temporal
layers.

2) Gate Implementation: The layers in Fig. 2 are com-
posed of selection gates and negation gates. Each ⃝ in these



gates represents a weight 𝑤 ∈ R.
The selection gate acts as a soft attention mechanism

to select between different operators across all layers (i.e.,
G,F and identity operator in the Temporal layer, ∧,∨ in the
Propositional and Aggregation layers), defined as:

𝑔𝑠 (𝑂) = 𝜎( [𝑤1
𝑠; · · · ;𝑤𝑘

𝑠 ]) · [𝑜1; · · · ; 𝑜𝑘]𝑇 (7)

where 𝜎(·) denotes the softmax function. For
temporal operators in the Temporal layer, 𝑂 =

[𝜌(G𝑋𝑇
𝑖
), 𝜌(F𝑋𝑇

𝑖
), 𝜌(𝑋𝑇

𝑖
)]⊤ ∈ R3 and 𝑘 = 3. For

logic operators in the Propositional and Aggregation layers,
𝑂 = [𝜌(𝑜1 ∧ 𝑜2), 𝜌(𝑜1 ∨ 𝑜2)]⊤ ∈ R2 and 𝑘 = 2. The
evaluation function 𝜌 is defined in (2) and (3). The selection
gate chooses between operators across layers by computing
a weighted sum, where larger weights in the softmax
output correspond to higher selection probabilities for their
associated operators. This selection mechanism is soft,
allowing for a continuous blend of different operators rather
than a hard, discrete choice.

The negation gate , given by 𝑔𝑛 = tanh(𝑤𝑛𝑒𝑔) · 𝑥, with
learnable parameters 𝑤𝑛𝑒𝑔, controls the sign of cluster 𝑥

inputs to the Propositional layer.

𝑔𝑛 = tanh(𝑤𝑛𝑒𝑔) · 𝑥, 𝑤𝑛𝑒𝑔 ∈ R, 𝑥 ∈ R (8)

The tanh function constrains the output to [−1, 1]. According
to the quantitative semantics defined in (3), multiplying by
a negative value negates the input. The gradient properties
of tanh encourage 𝑤𝑛𝑒𝑔 to converge towards either −1 or
1 during training, effectively learning whether to negate the
input.

3) Logic Space Analysis: Stacking Temporal layers mono-
tonically increases the logic space. Creating a logic space
that contains up to 𝑛 nested temporal operators can easily
achieved by stacking 𝑛 Temporal layers. For the Propositional
layer, we assert that:

Theorem 1: Aggregating the output from a single Propo-
sitional layer can represent any formula in the form of (6).

Proof: Consider a Propositional layer with inputs
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1, . . . , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛1, . . . , 𝑎𝑐𝑡𝑖𝑜𝑛𝑚. For each
𝑎𝑐𝑡𝑖𝑜𝑛𝑖 , combine:

(¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 ∨ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖) ∧ . . . ∧ (¬𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛 ∨ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖)

This is equivalent to (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 ∧ . . . ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛) →
𝑎𝑐𝑡𝑖𝑜𝑛𝑖 . Aggregating for all 𝑎𝑐𝑡𝑖𝑜𝑛𝑖 yields:

𝑚⊙
𝑖=1
((𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 ∧ . . . ∧ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑛) → 𝑎𝑐𝑡𝑖𝑜𝑛𝑖)

where
⊙

is either ∧ or ∨, matching the theorem’s form.
This theorem is significant for our learnable logic structure

as it establishes that we can express all necessary condition-
action pairs without the need for multiple Propositional
layers. This result justifies our design choice of using a single
Propositional layer, which helps to keep the structure com-
putationally efficient while maintaining full expressiveness.

4) Ensembling: Given a set of logic structures
{L̄1, L̄2, . . . , L̄𝑘}, we can ensemble them by aggregating
their outputs with an additional Aggregation layer. Formally,

L̄ensemble = A(L̄1, L̄2, . . . , L̄𝑘) (9)

In practice, we noticed that ensembling multiple logic struc-
tures can improve the robustness of the learned rules.

5) Rule Extraction and Simplification: The rule extraction
and simplification process transforms the learned logic struc-
ture into interpretable condition-action pairs. To interpret the
learned logic structure L̄, we extract its logic formula L by
traversing the structure and selecting the most probable oper-
ators by concretizing the selection gates and negation gates.
Given a selection gate 𝑔𝑠 , let C(·) denote the concretizing
function:

C(𝑔𝑠) = argmax
𝑜𝑝

𝑤
𝑜𝑝
𝑠 , 𝑜𝑝 ∈

{
{G,F, id},
{∧,∨},

(10)

where 𝑤
𝑜𝑝
𝑠 represents the weights associated with each

operator in the selection gate. For the negation gate 𝑔𝑛, the
concretizing is determined by the sign of the weight:

C(𝑔𝑛) =
{

negation, if 𝑤𝑛𝑒𝑔 < 0
original, otherwise

(11)

A concrete example is shown in Fig. 2 by iteratively applying
(10) and (11) to the selection and negation gates. For the
ensembling logic structure, we only need to apply the same
rule further for the additional Aggregation layer.

The extracted formula is then simplified to a set of
condition-action pairs in the form of (6). We apply the
Quine-McCluskey algorithm [26] to simplify the extracted
formula. Such simplification removes redundant cluster (e.g.,
∧(𝑃1

𝜃1
∨ ¬𝑃1

𝜃1
)). The resulting formula is then converted to

conjunctive normal form:
∧𝑛

𝑖=1

(∨𝑚
𝑗=1 �̄� 𝑗 ∨

∨𝑙
𝑘=1
¤𝑃𝑘

)
, where

�̄� 𝑗 and ¤𝑃𝑘 represent condition and action predicates, re-
spectively. By double negating the condition predicates and
applying De Morgan’s laws, this formula can be further
simplified to condition-action pairs in the form of (6).

The extracted formula is not necessary to be identical to
the original formula, because soften operators are used to
approximate the logic operators. However, in practice, we
find the extracted formula is close to the original one (0.051
mean absolute error over all scenarios). More importantly,
the scoring rule we learned will be used to rank different
motion plans in closed-loop evaluation. We noticed that such
approximation almost does not affect the ranking.

C. Learning From Single-Class Demonstration
Most demonstration datasets consist solely of examples

representing ideal driving behaviors. Our goal is to learn the
logic structure L̄∗ 2 and predicate parameters 𝜽∗ that grade
demonstrations with the highest score and unseen behaviors
with lower scores. Directly optimizing on (4) would simply

2 L̄ means the learnable logic structure, while L means a concrete logic
formula defined by (1).



make the score L̄(𝑆; 𝜽) to be 1 for all demonstrations. The
optimizer could find “shortcuts” and result in learning trivial
formulas like 𝑃1

𝜃1
∨ ¬𝑃1

𝜃1
, which are always true and do not

provide meaningful rules. To address this issue, we introduce
two regularization terms for 𝜽 and L̄. The full learning
algorithm is presented in Algorithm 1.

Algorithm 1: Training with Regularization
Input: Dataset D+, initial logic structure L̄, initial

parameters 𝜽 , learning rates 𝛼, 𝛽, max weight
𝑤max, batch size 𝐵, number of epochs 𝐸

Output: Optimized L̄∗ and 𝜽∗

1 Function Update(L̄, 𝜽 ,J , 𝛾):
2 Update 𝜽 with ∇𝜽J ;
3 Update L̄ (i.e., gate weights) with ∇L̄J ;
4 return L̄, 𝜽;
5 Function Regularize(L̄, 𝜽 , 𝛼, 𝛽, 𝑤max):
6 𝜽 ← 𝜽 − 𝛼 · sign( 𝜕L̄

𝜕𝜽 );
7 foreach Aggregation layer in L̄ do
8 𝑤∧ ← min(𝑤∧ + 𝛽, 𝑤max);
9 return L̄, 𝜽;

10 for epoch ← 1 to 𝐸 do
11 for each batch {𝑆1, . . . , 𝑆𝐵} ∼ D+ do
12 J ← 1

𝐵

∑𝐵
𝑖=1 L̄(𝑆𝑖; 𝜽);

13 L̄, 𝜽 ← Update(L̄, 𝜽 ,J , 𝛾);
14 L̄, 𝜽 ← Regularize(L̄, 𝜽 , 𝛼, 𝛽, 𝑤max);

15 return L̄∗ ← L̄, 𝜽∗ ← 𝜽

Given the state space as 𝑆 = {(E𝑡 , 𝜏𝑡 )}𝑇𝑡=0, the acceptable
region is defined as {𝑆 | L̄ (𝑆; 𝜽) > 0}. The shortcut issue
arises when the acceptable region encompasses states that
should be excluded. Thus, our objective is to constrain the
acceptable region through regularization.

1) Regularization of Predicate Parameters 𝜽: We impose
constraints on the predicate parameters 𝜽 to induce move-
ment in a direction that reduces the acceptable region. The
following regularization is applied: 𝜽 = 𝜽 − 𝛼 · sign

(
𝜕L̄
𝜕𝜽

)
,

where 𝛼 is a small positive constant controlling the update
magnitude. The sign function ensures that 𝜽 moves in the
direction that decreases the overall logic value, irrespective
of gradient magnitude. This regularization serves to reduce
the number of states included in the acceptable region.

2) Regularization of Logic Structure L̄: In the Aggre-
gation layer, we promote the selection of the ∧ operator
while preventing excessive bias. For a weight vector 𝑊𝑠 =

[𝑤∧𝑜𝑝 , 𝑤∨𝑜𝑝], we apply: 𝑤∧𝑜𝑝 = min(𝑤∧𝑜𝑝+𝛽, 𝑤max), where 𝛽 is
a small positive constant and 𝑤max is a predefined maximum
weight value. This regularization contributes to reducing the
number of states included in the acceptable region, as the ∧
operator is more restrictive than ∨. The capping mechanism
ensures that 𝑤∧ does not grow infinitely.

The key argument here is that if a particular logic structure
or parameter is truly significant for capturing the essential
rules of the demonstration data, it will not be eliminated by

the regularization process. This self-correcting mechanism
ensures that the regularization primarily affects spurious or
overly permissive rules while preserving the core driving
principles embedded in the demonstrations.

V. Experiments
A. General Experiment Setup

1) Predicate Types: We consider 63 condition predicates
and 20 action predicates in the predicate set P. All predicates
are categorized into four types: (1) safety-related (e.g., if the
plan will collide with obstacles) (2) comfort-related (e.g.,
if the acceleration is in a reasonable range); (3) efficiency-
related (e.g., if the car is in a slow lane); (4) environment-
related (e.g., if the curvature of the current lane is high).
Implementing the predicate set P involves LLM-aided design
[27], but the final predicates 3 were manually checked to
ensure correctness and sensibility.

2) Dataset and Scenarios: We used all the NuPlan
demonstrations in Singapore, Pittsburgh, and Boston, and
part of the demonstrations in Las Vegas, to train the logic
structure. The scenarios are grouped into 9 types (the first
column in Table II). The dataset is split into 90% training and
10% validation. The validation set is used for hyperparameter
tuning and early stopping.

3) Hyperparameters and Training Details: We trained an
ensemble L𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 with 10 different L. Each L has 2
layers of the Temporal layer. The single class regularization
parameters 𝛼 and 𝛽 are set to 10−5 and 10−3, respectively.
The learning rate is set to 10−4, and optimized with the Adam
optimizer. The batch size is set to 32. The training process
is stopped when the validation loss does not decrease for 10
epochs.

B. Case Study
1) Logic Rules Discovered: Fig. 1 shows three of the rules

learned by the grading logic network. Given the motion plan
proposed by PDM [1], the grading logic network assigns a
score to each plan based on the learned rules. Fig. 3 shows
why the blue, red and orange plans receive lower scores.
The blue plan receives a low score for going beyond the
drivable area (the gray area), which violates the rule ⊤ →
GInDrivable. The red plan is penalized for exceeding comfort
constraints (the blue dashed line) on lateral acceleration,
which violates the rule GSafeTTC → GComfortable. The
orange plan receives a lower score for exceeding the speed
limit (the red dashed line) when not overtaking another ve-
hicle, which violates the rule ¬SpeedLimit → FOvertaking.
These rules are almost always discovered in our experiment.
One exception is that the rule ¬SpeedLimit → FOvertaking
could sometimes devolve to SpeedLimit or GSpeedLimit in
scenarios where overtaking happens rarely (e.g., following
other cars).

We also discovered several interesting non-trivial rules.
For instance, CutInBehind∧Cruise→ FAccelerate. This rule
indicates that when a vehicle cuts in behind the ego vehicle

3The predicate code will be published online.



Fig. 3. Case study on discovered rules. From left to right, these sub-figures
explained why the blue, red, and orange plans received lower scores.

(CutInBehind) and the ego car runs at a constant speed
(Cruise), it will eventually lead to acceleration (FAccelerate).
This makes sense from a driving perspective because when
another vehicle cuts from behind, it often makes the driver
stressed and leads to acceleration.

2) Parameter Optimization: Comfortable𝜽 is a predicate
measure if a motion plan is comfortable, which has parame-
ters 𝜽 = [𝜃𝑎𝑙𝑎𝑡 , 𝜃𝑎𝑙𝑜𝑛 , 𝜃 𝑗𝑙𝑎𝑡 , 𝜃 𝑗𝑙𝑜𝑛 ], representing thresholds for
acceleration in forward, backward, left, and right directions.
It can be defined as:

Comfortable𝜽 := tanh( min
𝑖∈{𝑎 𝑓 ,𝑎𝑏 ,𝑎𝑙 ,𝑎𝑟 }

{𝜃𝑖 − 𝑖(𝜏)}) (12)

where 𝑖(𝜏) represents the maximum acceleration in the plan 𝜏

for each respective direction. Only when all the accelerations
are below their thresholds, is the predicate evaluated as
positive. The tanh function is used to ensure the output is in
[−1, 1]. All the threshold parameters in (12) are differentiable
and can be learned from the data. We learned the parameters
𝜽 from all the training demonstration data. The learned
parameters are shown in Table I.

TABLE I
Case Study on Parameters of 𝐶𝑜𝑚 𝑓 𝑜𝑟𝑡𝑎𝑏𝑙𝑒𝜽

𝑎 𝑓 𝑎𝑏 𝑎𝑙 𝑎𝑟

Standard 1.23 1.13 0.98 0.98
Learned 1.1 ± 0.21 1.045 ± 0.12 0.9 ± 0.11 0.95 ± 0.51

The learned parameters are shown in the format of mean ± standard deviation. It
is computed from 5 independent runs.

The Standard of comfortable acceleration is provided in
[28], we choose the thresholds when the participants feel
middling. The parameter Learned is close to the Standard.
In practice, it is noticeable that the acceleration thresholds
are hard to estimate. However, the learned parameters are
close to the standard by learning from data, which indicates
the proposed method can learn the parameters characterizing
the demonstration data well.

C. Evaluation in Closed-loop Planning
A practical way to evaluate the learned rules is to deploy

them in a closed-loop planning system. A good logic struc-
ture should be able to filter out undesirable plans and only
allow the well-performing plans to be executed. We evaluate
the learned logic structure in the closed-loop planning system
on the NuPlan, for both Closed-Loop Non-Reactive (CL-NR)
and Closed-Loop Score Reactive (CL-R) settings. In the CL-
NR setting, all the other agent except the ego vehicle is log-
replayed on the original data, while in the CL-R setting, the

different agents are controlled by an IDM policy instead.
The results are shown in Table II, which reflects an overall
performance in terms of the metrics defined by NuPlan.
Notice that these metrics are not the same as the scores given
by our learned rules, because they require knowing the full
simulation log to compute, while our learned rules can only
use history and current information. Here, we compared our
learned Scoring Logic Network (SLN) with the Expert Rules
(ER) in PDM [1] and the neural critic [4]. The last two rows
show the overall performance on “All” the scenarios and the
Val14 split originally used for evaluating the ER [1].

TABLE II
Closed Loop Planning Performance

Rule Complexity CLS-NR ↑ CLS-R ↑

| P̄ | | ¤P | #. Rules ER NC SLN ER NC SLN

Change Lane 20

20

24 0.89 0.79 0.92 0.88 0.77 0.91
Following 10 16 0.94 0.88 0.91 0.96 0.90 0.96
Near Static 10 19 0.87 0.77 0.93 0.87 0.85 0.87
Near VRU 10 17 0.87 0.81 0.93 0.89 0.75 0.87
Turn 20 31 0.89 0.82 0.91 0.89 0.71 0.91
Stopping 10 13 0.90 0.77 0.90 0.92 0.85 0.93
Starting 20 27 0.91 0.85 0.89 0.88 0.84 0.90
Stationary 20 21 0.94 0.73 0.94 0.96 0.81 0.97
Traversing 20 29 0.87 0.71 0.90 0.89 0.70 0.90

All 63 20 124 0.90 0.79 0.92 0.91 0.81 0.93
Val14 0.93 0.81 0.94 0.92 0.83 0.93

The videos and explanation of all the scenarios are available online.
The action predicate set ¤P is identical across all the scenarios.
The condition predicate set P̄ in different scenarios shares some common predicates
such as SafeTTC, but are not identical (e.g., the near Venerable Road Unit (VRU)
scenario has a unique predicate like VRUInCrosswalk).

The complexity of rules is measured by the number of
action predicates |P̄ |, the number of condition predicates | ¤P|,
and the total number of extracted action-condition pairs. The
detailed results are shown in Table II. In the All and Val14
splits, we used all of our 63 condition predicates and 20
action predicates. In the CL-NR setting, SLN outperforms
ER in 6 out of 9 scenario types, ties in 2, and underperforms
in 1, while in CL-R, it surpasses ER in 5 scenarios, ties
in 2, and falls short in 2. Notably, SLN achieves this
performance without the complex relationship modeling or
extensive parameter tuning required by ER. Compared to the
NC, SLN exhibits superior performance across all 9 sce-
nario types in both settings, offering substantial improvement
coupled with interpretability. Overall (in the last two rows),
SLN consistently outperforms both ER and NC for all the
scenarios and the Val14 [1] split is used to evaluate ER, in
both reactive and non-reactive settings.

D. Proposal Approach
A robust rule should be above all able to filter out unde-

sirable plans for different proposal approaches. We evaluate
the learned rules on different proposal approaches, including
PDM [1], AT-Sampler [4], Hybrid-PDM [1], and ML-Prop
[29]. The results are shown in Table III.

For both rule-based [1], [4] and learning-based proposal
approaches [1], [29], our learned rules demonstrate superior
performance in the closed-loop planning system, as shown
by the data presented in Table III.

https://xiong.zikang.me/FLoRA/#scenarios


TABLE III
Proposal Approach Ablation on “All”

CLS-NR ↑ CLS-R ↑

ER NC SLN (ours) ER NC SLN (ours)

PDM [1] 0.90 0.79 0.92 0.91 0.81 0.93
AT-Sampler [4] 0.83 0.81 0.89 0.84 0.80 0.90

Hybrid-PDM [1] 0.90 0.79 0.92 0.91 0.79 0.92
ML-Prop∗ [29] 0.81 0.75 0.86 0.82 0.76 0.85
∗ [29] introduced an deterministic policy. We generate one initial proposal with
this policy and then add lateral deviations to generate multiple parallel proposals.

VI. Conclusion

This paper introduced FLoRA, a framework for learning
interpretable scoring rules expressed in temporal logic for
autonomous driving planning systems. FLoRA addresses
key challenges by developing a learnable logic structure
to capture nuanced relationships among driving predicates;
proposing a data-driven method to optimize rule structure
and parameters from demonstrations; and presenting an op-
timization framework for learning from single-class driving
demonstration data. Experimental results on the NuPlan
dataset show that FLoRA outperforms both expert-crafted
rules and neural network approaches across various scenar-
ios, with different proposer types. This work represents a sig-
nificant step towards creating more adaptable, interpretable,
and effective scoring mechanisms for autonomous driving
systems, bridging the gap between data-driven approaches
and rule-based systems. The most significant limitation of
FLoRA is that it can only discover the relationships be-
tween the provided predicates with differntiable parameters,
but cannot discover the predicates themselves. Future work
will focus on extending FLoRA with LLM-aided predicate
discovery.
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